Loading…
Friday, October 19 • 2:55pm - 3:15pm
Bringing Interstellar Travel Down to Earth

Log in to save this to your schedule and see who's attending!

Recent advances in photonics and related fields have driven the development of technologies that may make interstellar flight a reality for people alive today. Specifically, the development of low-cost fiber-based lasers, which have followed a Moore’s Law-like growth in recent decades, would enable millions of lasers to be built in a modular fashion and then phase-locked together and act as a single optical element, able to focus their power onto a reflected sail (lightsail) that can be accelerated to 20% the speed of light in a matter of minutes.  Other technologies, such as low absorptivity materials (originally developed for fiber optic telecom) and the incredible miniaturization of sensors, gyros, etc., driven by the smartphone wars, means that an interstellar spacecraft massing just one gram could be sent to flyby nearby exoplanets and then beam HD-quality images back to earth in a 20-year mission. A number of technical challenges exist, however, ongoing work in the lab seeks to drive down the technological uncertainties. In this talk, a nascent research program at McGill University to examine the engineering aspects of this concept—focused on the dynamics of the light sail material and its response to dust grain impacts—will be presented, and intersections between laser-driven starflight and more down-to-earth technologies will be explored. 

Speakers
avatar for Dr. Andrew Higgins

Dr. Andrew Higgins

Professor, McGill University
Professor of Mechanical Engineering, performing research on ultra-high-speed dynamic phenomena with application to advanced spaceflight concepts.


Friday October 19, 2018 2:55pm - 3:15pm
Room CD Concordia Conference Center, MB Building 9th floor, 1450 Guy St, Montreal, QC H3H 0A1

Attendees (45)